Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Male mammals of seasonally reproducing species typically have annual testosterone (T) cycles, with T usually peaking during the breeding season, but occurrence of such cycles in male mysticete whales has been difficult to confirm. Baleen, a keratinized filter-feeding apparatus of mysticetes, incorporates hormones as it grows, such that a single baleen plate can record years of endocrine history with sufficient temporal resolution to discern seasonal patterns. We analyzed patterns of T every 2 cm across the full length of baleen plates from nine male bowhead whales (Balaena mysticetus) to investigate occurrence and regularity of T cycles and potential inferences about timing of breeding season, sexual maturation, and reproductive senescence. Baleen specimens ranged from 181–330 cm in length, representing an estimated 11 years (smallest whale) to 22 years (largest whale) of continuous baleen growth, as indicated by annual cycles in stable isotopes. All baleen specimens contained regularly spaced areas of high T content (T peaks) confirmed by time series analysis to be cyclic, with periods matching annual stable isotope cycles of the same individuals. In 8 of the 9 whales, T peaks preceded putative summer isotope peaks by a mean of 2.8 months, suggesting a mating season in late winter / early spring. The only exception to this pattern was the smallest and youngest male, which had T peaks synchronous with isotope peaks. This smallest, youngest whale also did not have T peaks in the first half of the plate, suggesting initiation of T cycling during the period of baleen growth. Linear mixed effect models suggest that whale age influences T concentrations, with the two largest and oldest males exhibiting a dramatic decline in T peak concentration across the period of baleen growth. Overall, these patterns are consistent with onset of sexual maturity in younger males and possible reproductive senescence in older males. We conclude that adult male bowheads undergo annual T cycles, and that analyses of T in baleen may enable investigation of reproductive seasonality, timing of the breeding season, and life history of male whales.more » « less
-
Using DNA methylation profiles (n= 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels inHOXLsubclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.more » « less
-
null (Ed.)The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.more » « less
An official website of the United States government
